Theoretical—Particle and Fields

Activities in this area primarily focus on investigations on beyond the standard model applications of lattice field theory. This includes strongly coupled supersymmetric systems such as arise in hidden sector models of spontaneous supersymmetry breaking. We have also studied models of compositeness in the Higgs sector of the Standard Model, with electroweak symmetry broken by strong dynamics of a new gauge force. This has led us into developing software for the study of resonance properties from first principles, which is also useful for lattice quantum chromodynamics. A key focus of ongoing research is dualities in gauge theories, such as S-duality (electric/magnetic) in N=4 super-Yang-Mills, and gauge/gravity dualities (AdS/CFT).  This allows us to study quantum gravity in numerical simulations.  Much of our work has an eye toward string-inspired particle phenomenology, which we have worked on in the past.

Faculty Researchers:

  • Joel Giedt
Back to top