Symmetry, interaction and topological effects, as well as environmental screening, dominate many of the quantum properties of reduced-dimensional systems and nanostructures. These effects often lead to manifestation of counter-intuitive concepts and phenomena that may not be so prominent or have not been seen in bulk materials. In this talk, I present some fascinating physical phenomena discovered in recent studies of atomically thin two-dimensional (2D) materials. A number of highly interesting and unexpected behaviors have been found – e.g., strongly bound excitons (electron-hole pairs) with unusual energy level structures and new topology-dictated optical selection rules, massless excitons, tunable magnetism and plasmonic properties, electron supercollimation, novel topological phases, etc. – adding to the promise of these 2D materials for exploration of new science and valuable applications.
Date
Location
Darrin Communications Center (DCC) 337
Speaker:
Steven G. Louie
from Physics Department, University of California at Berkeley, and Lawrence Berkeley National Lab